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Abstract

Current camera image and signal processing pipelines (ISPs), including deep
trained versions, tend to apply a single filter that is uniformly applied to the entire
image. This despite the fact that most acquired camera images have spatially
heterogeneous artifacts. This spatial heterogeneity manifests itself across the
image space as varied Moire ringing, motion-blur, color-bleaching or lens based
projection distortions. Moreover, combinations of these image artifacts can be
present in small or large pixel neighborhoods, within an acquired image. Here,
we present a deep reinforcement learning model that works in learned latent
subspaces, recursively improves camera image quality through a patch-based
spatially adaptive artifact filtering and image enhancement. Our RSE-RL model
views the identification and correction of artifacts as a recursive self-learning and
self-improvement exercise and consists of two major sub-modules: (i) The latent
feature sub-space clustering/grouping obtained through an equivariant variational
auto-encoder enabling rapid identification of the correspondence and discrepancy
between noisy and clean image patches. (ii) The adaptive learned transformation
controlled by a trust-region soft actor-critic agent that progressively filters and
enhances the noisy patches using its closest feature distance neighbors of clean
patches. Artificial artifacts that may be introduced in a patch-based ISP, are also
removed through a reward based de-blocking recovery and image enhancement.
We demonstrate the self-improvement feature of our model by recursively training
and testing on images, wherein the enhanced images resulting from each epoch
provide a natural data augmentation and robustness to the RSE-RL training-filtering
pipeline.

1 Introduction

Digital camera’s Image and Signal Processing(ISP) pipeline commonly relies on specialized digital
signal processors for image processing. They are used in converting RAW acquired images, captured
by the camera’s digital sensors into conventional RGB or JPEG images. Camera manufacturers have
been pursuing and requiring the development of sophisticated filters as part of their camera ISP
to resolve diverse image artifacts (distortions) during the conversion process. These image filters
include methods for demosaicing(35; 18), deblurring(7), white balancing(47), color correction(34),
etc.. Today’s digital camera ISPs however need to be even more sophisticated. With increased image
resolutions, image artifacts are naturally heterogeneous, as there is a mixing of distortions caused
by sensors, lenses, motion etc. For instance, Fixed-pattern Noise (FPN) is a known issue which
commonly refers to as Dark Signal Non-Uniformity (DSNU) and Photo Response Non-Uniformity
(PRNU)(6). Another example would be Bayer Filter artifacts which occur when demosaicing Color-
Filter Array(CFA). The two typical artifacts from Bayer Filtering are false color, an abrupt color shift
along edges that prevents good interpolation, and Moiré ringing.

Deep learning approaches have progressively replaced the image and signal processing applied in
conventional computational photography tasks. For instance, with low-level details and hierarchi-
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cal structures of neural network implemented, one could achieve superior performance for image
deblurring (e.g. (3; 51; 45; 46)) and deblurring (e.g. (33; 44)) tasks. Nevertheless, most trained and
deep learned prior solutions rely on the assumption that there is a single image artifact per RAW
image which needs to be diagnosed and filtered. Heterogeneous camera image artifacts, especially
mixtures, are insensitive to pixel locations. The assumption is widely accepted with image signal
processing tasks, and particularly agreed within image artifact removal problems, including many of
the deblurring tasks. For a camera ISP, however, this assumption fails to capture spatial heterogeneous
acquired corruption caused by a mismatch of acquisition settings and environmental lighting in realis-
tic scenes. Moreover, one can hardly tell if the artifacts come from sensor limitations, environmental
changes (day v.s. night) or post processing such as lossy compression. Such varied real world image
processing issues motivates us to adapt a recursive self-improving machine learning approach for the
next generation of camera ISPs.

In this paper, we present a deep reinforcement learning model that works in learned latent subspaces,
recursively improves camera image quality through a patch-based spatially adaptive artifact filtering
and image enhancement. Our RSE-RL model (section 3) views the identification and correction
of artifacts as a recursive self-learning and self-improvement exercise and consists of two major
sub-modules: (i) The latent feature sub-space clustering/grouping obtained through an equivariant
variational auto-encoder enabling rapid identification of the correspondence and discrepancy between
noisy and clean image patches. (ii) The adaptive learned transformation controlled by a trust-region
soft actor-critic agent that progressively filters and enhances the noisy patches using its closest feature
distance neighbors of clean patches. Artificial artifacts that may be introduced in a patch-based
ISP, are also removed through a reward based de-blocking recovery and image enhancement. We
demonstrate (section 4) the performance of our RSE-RL model including the self-improvement
features by recursively training and testing on images, wherein the enhanced images resulting from
each epoch provide a natural data augmentation and robustness to the RSE-RL training- filtering
pipeline.

2 Related Work

2.1 Source of Camera Image Artifacts

• Optical Aberrations: The optical instrument has its own limitation. For instance, distortion
and blur occur when the lens has a spherical aberration. Chromatic aberration is a failure
of a lens to focus all colors to the same point. Vignetting is a reduction in illumination
and saturation toward the periphery compared to the image center. Lens flare occurs in
photography when rays from a very bright light source have internal reflections and scatter
in the lens system of a camera, overlaying the captured image with artifacts such as blown
out starbursts, colored shapes, rain-bow patterns and haze.

• Light and Sensor Capturing Issues: Noise, contrast and atmospheric haze in environments
definitely affect the result of RAW image capturing. Fixed-pattern Noise (FPN) is a known
issue which commonly refers to Dark Signal Non-Uniformity (DSNU) and Photo Response
Non-Uniformity (PRNU)(6).

• Bayer Filter Artifacts: These artifacts occur when demosaicing Color-Filter Array(CFA).
Two typical artifacts are false color, which is abrupt color shift along edges that prevents
a good interpolation, and Moiré Artifact, which is caused by discretization of continuous
signals and yields repeated patterns.

There have been dedicated efforts to calibrate instruments and to invent more sophisticated camera
ISP algorithms for inevitable artifacts removal (e.g. (37)). With the advent of powerful computing
units, deep learning algorithms are applicable in more and more aspects of research, so does in
computational photography (c.f. (53)).

Image Filtering and Enhancement The ubiquity of noise in digital photos leads to a fast-growing
image denoising problem. In the early years, there are traditional methods that apply Gaussian
blurring, TV regularization (41), or a coefficient transform in Fourier domain (43). However, it is
the idea of non-local mean denoising from Buades et al. (11) that truly made a gigantic leap in
denoising performance. The non-local mean method is built upon self-similarity and redundant
information over realistic images. Later on, another non-local denoising approach, referred to as
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BM3D(13) uses the sample idea and exploits the sparsity further. There are also discussions with
respect to patch-based scheme (19). As the deep learning era arrives, more and more works are using
Convolutional Neural Network(CNN) or Generative Adversarial Network(GAN) that beats most of
the classical, sophisticated methods (55; 21; 50; 38; 24). However, due to the expensive capturing
procedure, as noise is diverse in large-scale realistic photos, most of the prior works fall into the
study in the synthesized domain only. For instance, the most common AWGN noise model cannot
effectively remove noise from real images, as discussed in earlier benchmarks (39). How to fill in the
gap between the synthesized noise model and real-world noisy images remains an open question.

Camera ISP There are numerous works related to camera image signal processing, where different
types of articulated modelings are applied to different vision tasks. Among all of them, some
related works such as color demosaicing(e.g. (27)), image denoising(e.g. (45)), auto white balance
correction(e.g. (4)), removing lossy compression artifacts (e.g. (17)), etc., have been separately
discussed under deep learning settings. Within the scope of image denoising, there is a novel work,
referred to as CycleISP(54), which develops a generative model to generate synthesized realistic
image data that is both forward and reversed. Moreover, solving multi-task image enhancement is
possible: (42) is an early work that focuses on jointly solving demosaicing and denoising problems
by applying deep learning schemes from the source sampling of sensors. Later, a recent work (25)
presented a single deep learning model containing 5 parallel learning levels to replace the entire
camera ISP pipeline, referred to as PyNET. The input RAW image from a cellphone is aligned with
a DSLR camera output as the supervised training data and PyNET outputs a visually high-quality
sRGB image.

Latent Subspace Learning One of our major contributions is to learn a latent encoding for
maximizing the usage of self-similarity in natural images via probing subspaces. There are at least
two different branches of workflows. One branch is focusing on a direct disentanglement of latent
space clustering under variational. For example, in (20; 8; 15), the hierarchical structure of latent
space is explored to obtain richer representations compared to a single prior. Another branch of works
is a direct fusion of deep learning models and machine learning methods. They developed algorithms
that perform clustering or learning a mixture model within the latent space encoding, including Hard
K-means Clustering (52), Soft K-means Clustering (26), Gaussian Mixture Model VAE(14), and
direct subspace clustering VAE (31). All of these exemplary models manage to learn from visual
recognition and classification tasks, yet their performance in a more realistic image denoising task
needs to be testified.

3 Recursive Self-Enhancing Camera ISP

In this section, we describe our reinforcement learning model that recursively improves in spatially
adaptive, heterogeneous image artifact filtering and image enhancement. We target the problem of
resolving image artifacts, specifically on image denoising, but our approach can be extended to solve
other comprehensive tasks, such as generating RAW to sRGB images.

In the paper, we assume the observed image Iobs is obtained via the following mixture modeling:

f(Iobs) = Igt +

S∑
s=1

Σs �Ms. (1)

The function f is an identity function when we are performing sRGB to sRGB image denoising
tasks. The noise Σs and the mask matrix Ms are independent and blind to the model (� refers
to element-wise product). Moreover, we do not rely on the underlying distribution Σs. Except
for the synthesized dataset, we cannot obtain the accurate number of artifact types S, and S is a
hyper-parameter in most scenarios. We would like to present and discuss how to disentangle and
filter from (1) using our RSE-RL.

Overall Pipeline of RSE-RL Our recursive self-improving camera ISP in Figure 1 is a multiple
latent subspaces variational autoencoder. For every input image Iobs ∈ RH×W×C , we first divide the
input image into D by D patches P ∈ RD×D×C with overlaps allowed. For every D by D patch P
in the image, we denote its location mask Hn in the original image domain. P relates to the observed
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Figure 1: The overall pipeline of our RSE-RL: For each given observed image, we split the image
into local patches and feed every patch as a stack into the encoding network. The latent space is
divided into three subspaces, the encoder projects the YUV features of the patches onto three latent
subspaces Zy, Zu, and Zv. Both the clean patches and noisy patches are projected onto the three
spaces. A set of transformations T are learned to transform the latent representation of the noisy
patches to a corresponding representation of the clean patches in all three subspaces. The transformed
noisy representations are sent to the decoder for image reconstructions. After the denoised images are
constructed, a PSNR is calculated and used to obtain the reward for a soft-actor-critic reinforcement
learning model. The RL model uses the distance from the target PSNR and actual PSNR as the
reward to adjust the trainable weights in the transformation T . Hence we have a self-enhancing image
denoising network.

image in the form P
def
= Iobs �Hn. Even though we cannot probe the magnitude of the artifacts, it

can be approximated within patch with a single dominant modeling, namely:

f(P ) = f(Iobs �Hn) = Igt �Hn +

S∑
s=1

Σs �Ms �Hn,≈ (Igt + Σi �Mi)�Hn. (2)

Our RSE-RL network is learning from image patches P and Igt �Hn. Both clean patches P c and
noisy patches P b are fed into the network. Each batch of image patches is fed into our encoder
q(P |~θ), with parameter ~θ. The encoder will generate three latent vectors ~zy, ~zu, and ~zv on three
subspaces that we defined. The three subspaces preserve the features on three channels of the patches.
The three channels are one luma component Y and two chrominance components, U (blue projection)
and V (red projection) respectively.

On each subspace, this is a transformation function T that learns to transform a noisy projection to
a clean projection: ~zb1 = T (~zb). The transformation T is trained so that the transformed projection
approaches the clean patch representation T (~zb) −→ ~zc.

Then, based on the transformed latent space projections, we set up the decoder
r(Ty(~zby), Tu(~zbu), Tv(~z

b
v)|~ψi) with parameter ~ψ. Each patch’s latent encoding representation is

fed into the decoder to decode independently. The decoded latent vectors are integrated to reconstruct
the patches. The output is the reconstructed blocks that approximate Igt �Hn.

Loss Function In practical implementation, our training process optimizes different loss func-
tions. For training the network, our training loss Lvae consists of two parts: the evidence lower-
bound(ELBO) (30), including the data fitting term and the KL loss, and the regularization term. The
gradient computed from Lvae is used to update all the parameters in the network, including the
encoder, decoder, and the transformation functions.

Lvae = LMSE + LKL + Lreg. (3)
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where

LMSE =‖r(q(P c|~θ)|~ψ)− P c‖2F + ‖r(T (q(P b|~θ))|~ψ)− P c‖2F , (4)

LKL =− 1

2

∑
i

(1 + ~̂σi − exp(~̂σi)− ~̂µ2
i ), (5)

Lreg =λreg(‖~θ‖22 + ‖~ψ‖22). (6)

The transformation functions Ty, Tu, and Tv are trained under the identical terms. On each latent
subspace, Ltran is computed from the noisy patch projection and clean patch projection. Three
transformation functions are optimized separately, where the loss function on each latent subspace is
only computed by the projections in the corresponding latent subspace. Hence, three losses Ltrany

,
Ltranu

, and Ltranv
are computed. The transformation functions are optimized by the corresponding

loss: Ty is optimized by Ltrany
.

Ltran = ‖q(P c|~θ)− q(P b|~θ)‖2F (7)

Patch Assembly and Block Artifacts Upon getting the reconstructed blocks from decoders, we
merge these blocks back to the original image. If one naively concatenates two adjacent patches
without any tolerance of the overlaps generated when creating them, one could observe block artifacts
if these two patches pass different decoders. We apply post processing to remove block artifacts
generated from concatenation. For overlapping regions, we average the pixel output based on the
distance between the pixel and the overlapped patch centers via linear interpolation. To further
remove block artifacts, an reinforcement learning algorithm can be applied to learn a better size of
overlapping region.

Reinforcement Learning The Soft Actor-Critic (SAC) reinforcement learning algorithm (22; 23)
is utilized for self-enhancing image denoising. The RL model learns the action a, which is the
concatenation of the weight vectors ay, au, and av that used to adjust the transformation functions
Ty , Tu, and Tv . These trainable weights are multiplied with the weight vectors, hence we define the
action as:

Ts = ~as � T ′s s ∈ {y, u, v} (8)

where Ti is the updated ith weight and T ′i is the previous weight. The algorithm continuously updates
these trainable weights to enhance the transformation from noisy to clean patch representations,
which consequently improves the final denoising performance. Alternatively, the RL model can learn
to reduce the blocking artifacts.

A central feature of SAC is entropy regularization. This policy is trained to maximize a trade-off
between expected return and entropy, a measure of randomness in the policy. This is connected to
the exploration-exploitation trade-off: increasing entropy results in more exploration, which can
accelerate learning speed. It can also prevent the policy from prematurely converging to a bad local
optimum. In SAC, an entropy bonus is reflected in Qπ:

Qπ ≈ r + γ(Qπ(I ′, ã′)− αlogπ(ã|I ′)), ã′ ∼ π(·|I ′) (9)

where I is an input image and I’ is the resulting image when the transformation in the network has the
set of weight vectors a, α > 0 is the trade-off coefficient and logπ(ã|I ′) is the defined entropy.

SAC learns a policy π and two Q functions Q concurrently. In particular, the policy is learned by the
Critic network which maximizes V π(I), and the Q functions is learned by the Actor network which
minimizes a sample-approximated MSBE L(Φi, D).

Vπ(I) = Ea∼π[Qπ(s, a)] + αH(π(·|I)) = Ea∼π[Qπ(I, a)]− αlog π(·|I) (10)

SAC sets up the MSBE loss for each of the two Q-functions:

L(Φi, D) = E
[
((Q(I, a)− f(r, I ′, d))2

]
, (I, a, r, I ′, d) ∼ D (11)

where d is the done signal to set a terminating state, the target is given by

f(r, I ′, d) = r + γ(1− d)(minj=1,2(Qj(I
′, ã′)− αlog πθ(ã′|I ′))), ã′ ∼ π(·|I ′) (12)
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In this RL algorithm, the states are the images, and the reward r is given by computing the distance
between the actual PSNR and the target PSNR, namely

r = k · (PSNR− PSNRt) + c (13)

where k and c are constants for adjusting the scale of the reward and PSNR and PSNRt are
the averaged actual PSNR from testing and the target PSNR of the entire patch-assembled image,
respectively. The RL model learns to enhance the transformation and reduce the blocking artifacts.
Thus, to maximize the reward, the model is optimized so that the average PSNR of the testing images
approaches the target PSNR.

4 Experiments

To justify the performance of our RSE-RL algorithm, two datasets are considered in our experiments:
Synthesized Noisy CelebFaces Attributes (CelebA) Dataset(36) and Smartphone Image Denoising
Dataset (SIDD)(2). Gaussian noise is applied to images in the synthesized noisy CelebA dataset,
while the SIDD dataset contains realistic artifacts generated by smartphone cameras. An objective of
our experiments is to exhibit a performance enhancement by utilizing the RSE-RL network structure.
For comparison, an ordinary Variational Autoencoder is trained under identical experimental settings
in each experiment, referred to as Single Decoder VAE for comparison. For more details in training,
we refer to the supplementary materials.

4.1 Our Networks with CelebA Patches

Dataset Construction Large-scale CelebFaces Attributes (CelebA) Dataset is adapted for our
experiment. CelebA_HQ/256 dataset, which consists of images with size 256 × 256 pixels, are
selected from the CelebA dataset. These images are then sampled into two sub-datasets: a training
set with 2250 images and a validation set with 11250 images. Heterogeneous artifacts generator is
applied to the training set to generate noisy images from celebA, referred to as the synthesized noisy
CelebA dataset. Gaussian noise is generated on these images utilizing OpenCV(9). Each image, both
noisy and ground truth, in the training set is divided into 16× 16 pixels patches, with 4 pixels overlap
with the surrounding patches.

Figure 2: CelebA Denoising Results: images on the top row are images that contain the synthesized
artifacts (Gaussian Noise). The images on the bottom row are the denoising result from our RSE-RL.

Experimental Setup We test the denoising performance of our RSE-RL over synthesized noisy
CelebA dataset. Our encoder projects the patch-based images into the latent space using 5 convo-
lutional layers and 2 fully-connected layers in a subsequent order, while the decoder is a similar
structure with 2 upsampling layers and 5 transposed convolutional layers. The model is implemented
in Keras(12) and Tensorflow(1), and we use a single 12GB NVIDIA Tesla K80 GPU for training
and testing on the synthesized noisy CelebA dataset. One batch has 128 patches that are trained
simultaneously. The parameters are optimized in 50 epochs using Adam algorithm(29) with β1 = 0.9
and β2 = 0.999. The learning rate is set by an exponential decay learning rate scheduler that has an
initial rate of 0.001, decay factor of 0.95, and decay step 1000.

The soft actor-critic algorithm for self-enhancing is implemented by using Stable-Baseline3(40) from
OpenAI(10). We use OpenAI Gym for setting up the environment. The reward in the environment is
computed as stated in Equation 13. The model is trying to maximize the reward by optimizing the
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actions that adjusting the trainable weights in the three transformation functions, as stated in Equation
8. The action space is a set of weight vectors within the bound (0.999, 1.001) for minor adjustments.
The observation space is the actual PSNR score we achieve. In the synthesized CelebA dataset, the
learning rate for the model is set to 0.001. The results before and after the recursive self-enhancing
procedure are indicated in Table 1, denoted RSE-RL(before) and RSE-RL, respectively.

Table 1: CelebA Results Comparison

PSNR SSIM UQI
Image with Artifacts 16.64 0.5835 0.7327

N2V(32) 21.66 0.7242 0.9249
N2N(38) 26.60 / /

Single Decoder VAE 26.81 0.7621 0.9604
4-Decoder PS-VAE(53) 28.04 0.8266 0.9704

RSE-RL(before) 28.83 0.8322 0.9721
RSE-RL 29.03 0.8339 0.9731

RSE-RL(S) 28.79 0.8317 0.9717

Our denoising result on CelebA dataset with synthesized artifacts We evaluate our result using
PSNR, SSIM(49), and UQI(48) scores. In addition, baseline denoising methods, Noise2Void(N2V),
Noise2Noise(N2N) and PS-VAE, are applied to the synthesized artifacts dataset, and its denoising
results are compared with our networks. For N2V, the default model for 2D RGB images is trained
with 400 noisy images for 50 epochs and tested with 1575 noisy images. In the default model, each
image is divided into 128 16× 16× 3 patches, so a total of 51,200 patches are fed into the network.
For N2N, the pre-trained N2N model for Gaussian noise is tested on 1575 noisy images.

Table 1 provides the results obtained from using 2250 training images and 11250 testing images.
The training images are divided into 1 million 16 × 16 × 3 patches (441 patches per image) and
feed into the network. The result of the baseline method is compared to the results of our RSE-RL.
We can observe a significant improvement regarding all the quality metrics by utilizing RSE-RL. A
visualization of our denoised image results after self-enhancement can be found in Figure 2.

Figure 3: YUV Latent subspaces: the figure shows the YUV latent subspaces from the network.
From left to right, it shows the spaces ZY , ZU , and ZV respectively. Blue points are noise projections
and red points are clean projections. Principle Component Analysis is applied to reduce the latent
subspaces dimension into 2 for visualization.

Among the results in Table 1, the RSE-RL achieves the best performance regarding all three metrics.
We can observe small enhancements on all three quality metrics after applying the RL model for self-
improvement. This demonstrates that our self-enhancing model is able to continue being optimized
during the testing stage.

In addition, the results indicate that learning the transformations on the latent spaces is effective.
By comparing the three latent subspaces ZY , ZU , and ZV , we can observe that the noise has the
largest impact on the Y space ZY , which represents the luminance (brightness) of the image. There
is no significant difference between the noisy and clean patch representations on the other two
subspaces. This indicates that Gaussian noise has the most significant impact on brightness, compare
to chrominance (represented by U and V). The visualized latent subspaces can be seen on Figure 3.
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Another observation is that RSE-RL’s denoising performance is not significantly affected by the
training data size. In order to demonstrate this feature, an experiment using 450 training images (0.2
million patches) is conducted. This network is also tested under 11250 testing images, and the result
is shown in Table 1, denoted as RSE-RL(S). This result can be compared with RSE-RL(before) to
observe how the training data size affect the performance. This observation provides an effective way
of utilizing this network to largely reduce training time.

4.2 SIDD Denoising Result

Figure 4: SIDD Denoising Result: to better visualize the denoising result, we zoom in at the area
covered by the green rectangle in each figure on the left column. The figures from the left column to
the right column are: original noisy images from SIDD, zoomed noisy patches, and zoomed denoising
patches, respectively.

Dataset Construction Smartphone Image Denoising Dataset (SIDD) is a large-scale high-quality
image dataset collected from five representative smartphone cameras under 10 different scenes.
Each noisy image collected from smartphone cameras consists of artifacts via different ISO levels,
illumination, and lighting conditions, as well as signal-dependent noise. This dataset is a benchmark
for denoising algorithms, as its noise is generated under realistic scenarios.

In the experiment, 320 sRGB images are selected for training the network, and the SIDD Benchmark
Data is used to evaluate the performance of our network. The SIDD Benchmark Data contains 40
noisy sRGB images and their ground truth. 32 patches are selected from each benchmark image
for evaluation. For training the network, each noisy image and its ground truth are divided into
24× 24× 3 patches, with 8 pixels overlapping. 11.19 million patches build up the training data.

Experiment Setup The encoder is composed of five convolutional layers and two fully connected
layers, while decoders have the inverse structure as the encoder. Each encoder has approximately 2.2
million parameters, and each decoder has 1.6 million parameters. The model is trained on a single
12GB NVIDIA Tesla K80 GPU with a batch size of 128. The parameters are optimized in 20 epochs
using the same optimizer as the Synthesized Noisy CelebA dataset defined in Section 4.1.

The reinforcement learning model is identical to the model implemented in 4.1, which adjusts the
trainable weights in the three transformation functions. We want to show the improvement by using
the self-enhancing RL technique. The results before and after self-enhancement are shown in Table 2,
denoted as RSE-RL(before) and RSE-RL, respectively.

Our denoising result on SIDD dataset The results show that our self-enhancing RL model con-
tributes a small enhancement on PSNR, which demonstrates that our RL model is able to improve the
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Table 2: SIDD sRGB to sRGB Results (Small Scale)

PSNR SSIM PSNR SSIM
Noisy Image 31.18 0.831 BM3D(13) 25.65 0.685

NLM(11) 26.75 0.699 KSVD(5) 26.88 0.842
DANet(16) 39.25 0.955 RDB-Net(56) 38.11 0.945

Single Decoder VAE 31.89 0.874 4-Decoder PS-VAE(53) 32.17 0.881
RSE-RL(before) 32.38 0.891 RSE-RL 32.53 0.887

denoising results. Since we are only involving PSNR in the reward function, we can only observe
some improvements in terms of PSNR.

Table 2 also lists a set of benchmark denoising methods and deep learning methods which are used to
compare against our network. In the table, noisy images are the images before denoising procedures;
BM3D, NLM, and KSVD are the benchmark non-DL results; DANet and RDB-Net are two of
the state-of-art deep learning methods used for comparison with our method. The performance of
our model is significantly better than traditional methods. The visualized results of self-enhanced
denoised images can be seen in figure 4.2. BM3D, NLM, KSVD, DANet, and RDB-Net are the
benchmark results. As for efficiency comparison, our RSE-RL only contains 2.5 million parameters
in total, whereas DANet contains ∼ 60 million parameters, leading our network train much faster
compared to the state-of-the-art structure.

Figure 5: SIDD Y Latent subspace: the figure shows the Y latent subspace ZY from the network.
Blue points are noise projections and red points are clean projections. Principle Component Analysis
is applied to reduce the dimension of the latent subspace into 2 for visualization. We can observe a
rotation on the latent space between the noisy and clean patch projections.

The images from SIDD consist of the same set of realistic artifacts generated by smartphone cameras.
This leads to the same transformation on the latent space for every patch since each patch consists of
the same types of noises. From figure 5 we can observe a rotation between the noisy patch projections
and the clean patch projections on the latent space which is the transformation on the latent space.

5 Conclusions and Discussions of Broader Impact

Overview of our work We have presented our RSE-RL model, a self-improving camera ISP built
upon policy learning. The patch-based transformation is trained in decomposed subspace to identify
and rectify different types of artifacts progressively and respectively. We define the action and
reward for a self-enhancement framework and further discussed its potential in real-world image data.
Nonetheless, our work is an early-stage exploration, where the transformation is mostly in the linear
components. We are moving toward considering patch ordering or other complicated environmental
settings to further strengthen our work.

Discussions of Broad Impact The method we proposed is an RL-based solution to low-level vision
tasks. There might exist an accuse of collecting private photo information from users when the our
research extends to application side. But our current research don’t envision any broad ethical issues
surrounding our largely mathematical learning technique. We would of course welcome any issues
the reviewers might raise, and promise to address them.
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A Detailed Setup of Our RSE-RL Framework

Figure A1: For each given observed image, we split the image into local patches and feed every
patch as a stack into the encoding network. For both clean P c and noisy patches P b, the encoder
transforms the channels of patches from RGB to YUV. The latent space is divided into three
subspaces, the encoder projects the YUV features of the patches onto three latent subspaces Zy,
Zu, and Zv. Both the clean patches and noisy patches are projected onto the three spaces. A set
of transformations T = {Ty, Tu, Tv} are learned to match the latent representation of the noisy
patches to a corresponding representation of the clean patches in all three subspaces. For instance,
Ty(zby) = zcy for a noisy patch zby and a clean patch zcy in subspace Zy. The transformed noisy
representations are sent to the decoder for image reconstructions. The decoder reconstructs YUV
channels from the latent spaces representations and transform the channels from YUV back to RGB,
hence we get the denoised images.

Architecture of Patch Transformation - Correspondence Network In our network architecture,
the image patches are transformed from RGB to YUV channels prior to the encoding procedure. The
RGB-YUV transformation is defined as

[
Y
U
V

]
=

[
0.299 0.587 0.114
−0.147 −0.289 0.436
0.615 −0.515 −1.000

][
R
G
B

]

A set of encoders qy, qu, and qv encode the YUV channels respectively and project the patch
information on three latent subspaces Zy, Zu, and Zv. The dimension of one subspaces is set to 72
for both sets of experiments, hence the latent space dimension is 216. In each of the latent subspaces,
both clean and noisy patch representations are projected and we want to learn a transformation that
matches noisy patches to clean patches representations. The transformations Ty, Tu, Tv are defined
and operated in their corresponding latent subspaces. Each of the transformation Ts (s ∈ {y, u, v})
is a three-layer MLP, with identical dimension layers and ReLU activation. Each transformation is
trained to match from a noisy patch representation zbs to a clean patch representation zcs within its
latent subspaces, the loss function is defined in Equation (7).

Our reinforcement learning setting In the reinforcement learning settings, we start with our
pre-trained VAE and transformations and try to enhance the transformations recursively. The RL
model starts with the trainable weights in our pre-trained models and learns to minor adjust the
trainable weights in the transformations for obtaining higher PSNR. The reason for starting with our
pre-trained models is that random initialization on the trainable parameters leads to extreme difficulty
on convergence as well as getting better performance.
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In the soft actor-critic implementation, we use the default parameter settings for the Q-function (9),
where the entropy regularization coefficient α = 0.2 and the discount factor γ = 0.99. The reward r
for both sets of experiments are defined as below:

r = 1.25× (PSNRt − PSNR) + 5

where the specifications are identical to Equation (13). The target PSNR is set to PSNRt = 30.0 for
the experiments on CelebA dataset and PSNRt = 34.0 for SIDD dataset.

The action space a = {ay, au, av} is a set of weight vectors whose dimension is identical to the
hidden dimension of Ts. The action function is defined in Equation (8), which the dot products of the
weights in Ts and its corresponding weight vector as, s ∈ {y, u, v} are assigned as the new weights
in Ts. More specifically, we have

Tsj = as · T ′sj for s ∈ {y, u, v}, j = {1, 2, 3}

since Ts is a three-layer MLP. The state space is a set of trainable weights in the three transformations.
The states are denoted Tsj in the equation above.

B Additional Experimental Results of Our RSE-RL framework

Decomposed Subspace Visualization The following sets of figures show the denoising results on
each of the Y, U, and V spaces, which further demonstrate how the noises are removed on each space.
The figures A2 and A3 present the examples on both our synthesized CelebA dataset and SIDD
dataset. Furthermore, we show some patch-wise matching in Figure A4. The figure gives several
specific patches as examples for demonstrating how the noisy patches map to the clean patches. It
also shows the noises on the patches specifically, and we can observe the noises on Y, U, and V
spaces.

Iterative Image Enhancement Improvement Framework using our RSE-RL network We also
present how the images are recursively self-enhanced in the reinforcement learning framework in
Figure A5. The resulting images over CelebA dataset has shown us a improvement using RL
backbone. Without a RL training, our VAE performance yield at a local minimum while the weight
updating under feedback control gives us a closer to optimal result. We would also justify that, based
on our observation, random initialization of the entire scheme would yield a much more slower
convergence rate and an extreme low-PSNR local minimun, and thereby the pretrained network
parameter initialization is crucial for generating high-quality enhanced images.

Justification of Removing Block Artifacts There might be the case where our filter generates
patch-based enhancement result locally while ignoring the neighboring patches. The one-to-one
correspondence from noisy patches to clean patches might cause additional block artifacts, as stated
earlier in Section 3. We propose the post processing using overlapping patch smoothing, or additional
deblocking algorithm to correct the newly introduced artifacts. Below we show an ablation study
under the influence of overlapping patch selections and the use of deblocking artifacts.

In general testing, we compare the qualities between the non-overlapping patches and overlapping
patches, as well as the qualities before and after using the deblocking method (28). The average
PSNR for images composed by non-overlapping patches is 27.8214. And we can observe obvious
blocking artifacts on the edge of the patches (in Figure A6). When we apply the deblocking method,
the average PSNR is slightly reduced to 27.8212 and the block artifacts can still be visualized.

By comparison, after we apply the overlapping patches, there is a smooth transition on each of the
edge between two blocks. The average PSNR for images composed by overlapping patches is 28.84,
which is a significant enhancement. We can also observe the enhancement in the figure A6. However,
we applied the deblocking method to the images with overlapping patches and there is no observable
improvement, which the average PSNR stays the same.
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Figure A2: CelebA Denoising Visualization in YUV Spaces: images on the top row are images that
contain the synthesized artifacts (Gaussian Noise). The images on the second row are the denoising
result from our RSE-RL. And the images on the bottom row show the difference between the first two
rows, which are the expected noises we removed by the network. The images are scaled to [0, 255]
for all channels. Columns from left to right show the images on RGB channels, Y space, U space,
and V space, respectively. Our method reveals and remove the noise decomposed in three channels
respectively.
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Figure A3: SIDD Denoising Visualization in YUV Spaces: specifications are identical to Figure A2.
The figure demonstrates a noise removal over channels and show our patch based method can apply
to large-scale, realistic image as well.

Figure A4: Patch based matching results on YUV spaces: the first row are the noisy patches,
the second row are the clean patches that match to the noisy patches, the third are the contrast,
representing the noise we are removing. Columns from left to right- three columns as a group- are
the images on YUV spaces respectively. For presentation, the patches are scaled to [0, 255] for all the
channels. This justifies the correctness of our patch transferring scheme within each patch locally.
The detailed is preserved, too. Hence, our method is totally amenable to any size of images.
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Figure A5: Recursive Self-enhancing RL Visualization: the figure shows how the test images are
recursively enhanced in a 50-epoch RL training. We observe a performance boost when iterating
the weights of decomposed transformations under three latent subspaces. With the reinforcement
learning agent, the network converges to a better result compared to the case where only a solo VAE
framework can achieve. The last line also specify the difference between the starting image we fed
into RL agent and the final result after recursive learning.

Figure A6: Deblocking Results: this figure shows the results of a deblocking method(28), as well as
our overlapping patch smoothing alternative. It shows that our overlapping patch smoothing method
can remove the block artifacts that may be created by our patch-based scheme. The columns from
left to right show the noisy image, image composed by patches without overlapping, non-overlapping
patches with deblocking enhancement, image with overlapping patch smoothing, and image with
overlapping patch smoothing + deblocking enhancement. The PSNR for these images from left to
right are 19.89, 29.51, 29.50, 30.31, and 30.31.
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